

ECPGR Activity Grant Scheme – Third Call, 2016

Activity Report

Identification and updating data of eligible AEGIS accessions in both wheat and rye species

(TRIticum and SECale in AEGIS = TRISECA)

January 2017 – January 2018

Gergana Desheva, Emmanuelle Escarnot, Agnese Gailīte, Pavol Haupvogel, Jirí Hermuth, Zoran Jovović, Ludmila Papoušková, Agata Rascio, Silvia Strãjeru, Marcin Zaczyński, Marta Zavrelová and François Balfourier

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

CONTENTS

INTRODUCTION	. 1
METHODOLOGY AND APPROACH USED IN THE TRISECA ACTIVITY	. 1
RESULTS	. 2
1. Identification of eligible accessions to be proposed as AEGIS accessions	. 2
2. Establishment of proper documentation of AEGIS accessions	. 2
DISCUSSION AND RECOMMENDATIONS	. 3
Annexes	. 4
Table 1. Number of AEGIS candidate accessions defined per WWG members	. 5
Table 2. Sample status of AEGIS candidate accessions per WWG members	. 6
Table 3. Number of wheat selected candidate accessions per WWG members and documentation status of related passport data	. 7
Table 4. Number of rye selected candidate accessions per WWG members and documentation status of related passport data	. 8
Table 5. Number of wheat selected candidate accessions per WWG members and documentation status of related characterization and evaluation data	. 9
Table 6. Number of rye selected candidate accessions per WWG members and documentation status of related characterization and evaluation data	10
Table 7. Current status of the AEGIS collection in the Wheat Working Group, after completion of the TRISECA Activity (updated 15 March 2018)	11

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

INTRODUCTION

The Wheat Working Group (WWG) is not only involved in wheat but also in rye genetic resources, as both species can be crossed together to produce triticale. At the end of 2016, thanks to previous activities of the WWG (mainly the <u>TRAID Activity</u> in 2015), a total of 6484 accessions of *Triticum* sp. were flagged as AEGIS accessions in EURISCO; from these 6484 accessions, there was a majority of hexaploid species (5474 *T. aestivum*) but only few tetraploid and diploid species (for instance, only 151 *T. durum* and 60 *T. turgidum*). At the same time, only 146 *Secale* accessions (106 from Nordic countries and 36 from Czech Republic) were flagged as AEGIS accessions.

In the present <u>TRISECA Activity</u>, ECPGR members from 10 different countries planned to carry on the AEGIS initiative, by building a more representative European collection of both wheat and rye species. For *Triticum*, the effort was mainly focused on tetraploid species which are also very important species, in terms of diversity, for durum wheat improvement. All selected accessions, which were not yet well documented in terms of C&E data, were sown in the field for evaluation.

METHODOLOGY AND APPROACH USED IN THE TRISECA ACTIVITY

The workplan of this Activity was the same as in the previous TRAID Activity, on a period of 16 months, for the period from September 2016 to January 2018.

- Identification of eligible accessions to be proposed as AEGIS accessions according to the 'Revised simplified procedure for the selection and flagging of accessions for the European Collection'
- 2) Updating of both passport and characterization and evaluation (C&E) data, according to the Multi-crop Passport Descriptor v2 list and the C&E descriptors used in appropriate databases.
- 3) A common 2-3 days meeting to check and approve proper documentation, then to discuss about rules of management of these accessions in accordance with the principle of AEGIS.
- 4) A final interaction with National Focal Points (NFPs) in order to flag AEGIS accessions in EURISCO.

For wheat species, the identification of eligible accessions was realized by choosing accessions within the list of European Wheat Database (EWDB) accessions provided by Ludmila Papoušková, the EWDB manager (<u>http://genbank.vurv.cz/ewdb/</u>). In the same way the identification for rye species was realized with the help of Marcin Zaczyński, manager of the Central Crop Database for *Secale* (<u>http://secale.ihar.edu.pl</u>). This database and EURISCO were useful tools for editing lists of eligible rye accessions per country members.

After identification of proper eligible accessions in September 2016, each partner had to sow the part of his own accessions which needed to be updated for C&E descriptors. The sowing was performed in autumn 2016 or in spring 2017 according to the type of development of the accessions. The updating of both passport data and C&E data was carried out by each participant under the supervision of François Balfourier, Chair of the WWG in spring 2017.

A common 2-3 days meeting was organized in Poland in October 2017 with all participants, during which the datasets of all selected accessions were presented, definitely checked and approved by concerned WWG members. The management of these accessions in accordance with the principles of AEGIS was also discussed.

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

Then, each participant in this Activity had to provide his/her National Coordinator with the list of recommended accessions for consideration and formal inclusion in the AEGIS European Collection. Finally, the EURISCO National Inventory Focal Point, under instructions from the National Coordinator, had to officially include the accessions into the European Collection by flagging them in EURISCO (winter 2017).

RESULTS

1. Identification of eligible accessions to be proposed as AEGIS accessions

Table 1 (page 5) indicates the number of candidate accessions identified per partner within the TRISECA Activity. A total of 885 accessions were retained, divided in 350 rye and 535 wheat accessions. According to the objectives defined at the beginning of the Activity, half of the wheat accessions (266/535) were chosen within tetraploid species. Table 2 (page 6) gives the status of these accessions (SAMPSTAT descriptor); due to rye accessions status (mainly semi-natural populations), we observe a majority of traditional cultivars or landraces.

2. Establishment of proper documentation of AEGIS accessions

a) Passport data

The documentation status for passport data of selected candidate accessions are given in Tables 3 and 4 (pages 7 and 8), for wheat and rye respectively. For both species, a majority of mandatory descriptors, and in particular ORIGICTY and SAMPSTAT, are well documented. The low availability of data concerning collection site (LATITUDE, LONGITUDE, ...) can be explained by the fact that few accessions are true landraces or collected on a known locality which can be related to such data. Optional descriptors such as GR-CLAS, PLOIDY, REG_YEAR will be useful for future collection description. The full set of accessions is now globally well documented for passport data, according to the MCPD v2 list (see Excel file for <u>Passport data</u>, available online <u>here</u>).

b) Characterization and evaluation data

As indicated in Table 5 (page 9) for wheat, the whole set of accessions is not so well documented for characterization and evaluation data, which can be explained by the fact that some members of the TRISECA project started defining their candidate accessions only at the beginning of the Activity. Nevertheless, among the mandatory descriptors, some traits such as "plant height" and "kernel weight" are well documented, while descriptors related to grain and spike morphology still need some effort of characterization. Results concerning optional descriptors are variable but significant for some traits, depending on disease infestation during the characterization (see Excel file for <u>C&E data</u>, available online <u>here</u>).

Results for rye are given in Table 6 (page 10). For this species, the numbers of accessions per country may be different when compared to those of passport data. This may be explained by the fact that some members (Czech Republic and Romania) were not able to evaluate all their accessions in the field during 2017, while another (Poland) gave multiple results (different evaluation years) for a same accession. Consequently, even if only 350 rye accessions were used in TRISECA, evaluation data were obtained on an overall number of 709 "accessions". Except for 'protein content', most of the mandatory descriptors are well documented.

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

DISCUSSION AND RECOMMENDATIONS

The meeting discussed the representativity of the full AEGIS wheat collection and studied carefully the possible gaps within passport and C&E data. The appendix 2 of the AEGIS Memorandum of Understanding (MoU) concerning rules of management of the accessions in accordance with the principle of AEGIS was recalled. In particular, the sovereign right of each country member to decide which accessions have to be included in the AEGIS collection was confirmed. However, the WWG Chair asked all members to suppress accessions lacking data for mandatory descriptors (such as SAMPSTAT) and possible redundant sister lines within breeding lines, as suggested in the selection requirements approved by the Steering Committee, to avoid possible redundant material. In the same way, members were invited to check that proposed accessions were free of any third party obligation in terms of access rights, to complete as far as possible mandatory descriptors, and to check some mistakes in the scales for some of these descriptors.

All members were invited to send final reviewed lists of accessions, together with passport data and C&E data to F. Balfourier, Chair of the WWG, for final computation before sending them to L. Papoušková and Marcin Zaczyński, in order to be marked and updated in the EWDB and *Secale* databases, respectively. The results given in tables of the present report correspond to this final compilation performed after the meeting. Finally each partner has undertaken (i) to provide his/her National Coordinator with the list of recommended accessions for consideration and formal inclusion in the European Collection, (ii) then to check that the EURISCO National Inventory Focal Point, under instruction from the National Coordinator, has officially included the accessions into the European Collection at the time of reporting is given in Table 7 (page 11) for each member country. By 15 March 2018, a total of 267 new accessions were effectively flagged as AEGIS accessions in EURISCO, while 618 were pending.

The second day of the meeting was dedicated to discussing the management of this AEGIS wheat collection and the future agenda of the TRISECA project until the end of 2017. Considering safety duplication, it was reminded that safety-duplicates of AEGIS accessions should be sent to another Associate Member genebank, possibly in a different country and/or to the Svalbard Global Seed Vault. Members who have not started to develop duplicates were invited to do so.

Finally, new activities of the Wheat Working Group were proposed and considered in order to prepare the future calls for proposals under the ECPGR Grant Scheme. Four possible future activities were discussed: (i) to evaluate the grain shape (width, length) on TRISECA accessions by using Optomachine, as presented by the French member; (ii) to develop a training course on identification of botanical classification in *Triticum* species in relationship with the botany specialist from N.I. Vavilov Research Institute of Plant Industry (VIR); (iii) to reduce gaps in AEGIS accessions by introducing new geographical origins; and (iv) to define the state of the art concerning *Aegilops* species conserved in the different genebanks.

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

ANNEXES

Table 1. Number of AEGIS candidate accessions defined per WWG members 5
Table 2. Sample status of AEGIS candidate accessions per WWG members
Table 3. Number of wheat selected candidate accessions per WWG members anddocumentation status of related passport data
Table 4. Number of rye selected candidate accessions per WWG members and documentation status of related passport data
Table 5. Number of wheat selected candidate accessions per WWG members and documentation status of related characterization and evaluation data
Table 6. Number of rye selected candidate accessions per WWG members anddocumentation status of related characterization and evaluation data10
Table 7. Current status of the AEGIS collection in the Wheat Working Group, aftercompletion of the TRISECA Activity (updated 15 March 2018)11

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

Table 1. Number of AEGIS candidate accessions defined per WWG members

		No. of accessions								
Country	INSTCODE (*)	Triticum species (6x)	<i>Triticum</i> species (4x)	<i>Triticum</i> species (2x)	Secale cereale	Total				
Belgium	BEL001	87				87				
Bulgaria	BGR001	7	26	32	15	80				
Czech Republic	CZE122	17			36	53				
France	FRA040	11	159	13	50	233				
Italy	ITA079		14			14				
Latvia	LVA009				6	6				
Montenegro	MNE001	6	20		5	31				
Poland	POL003	8	12		141	161				
Romania	ROM007		12	44	72	128				
Slovakia	SVK001	30	23	14	25	92				
Total		166	266	103	350	885				

(*) Decoded institute names:

BEL001	CRA-W Centre Wallon de Recherche Agronomique, Gembloux
BGR001	Institute for Plant Genetic Resources K. Malkov', Sadovo
CZE122	Crop Research Institute, Prague
FRA040	INRA Genetic Diversity and Ecophysiology of Cereals, Clermont-Ferrand
ITA079	CREA-CI Centro di Ricerca per la Cerealicoltura e le Colture Industriali, Foggia
LVA009	Latvian State Forest Research Institute 'Silava'
MNE001	University of Montenegro, Biotechnical faculty, Podgorica
POL003	Plant Breeding and Acclimatization Institute, Radzików
ROM007	Suceava Genebank
SVK001	Plant Production Research Center Piešťany

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

Table 2. Sample status of AEGIS candidate accessions per WWG members

	No. of accessions												
Country	Traditional cultivars / landraces	Breeders' lines	Advanced/ improved cultivars	Other	Unknown	Total							
Belgium	87					87							
Bulgaria	39	4			37	80							
Czech Republic	4		49			53							
France	142		91			233							
Italy	14					14							
Latvia			4	2		6							
Montenegro	31					31							
Poland	114	24	23			161							
Romania	110	14		4		128							
Slovakia	26	21	17	5	23	92							
Total	567	63	184	11	60	885							

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

Table 3. Number of wheat selected candidate accessions per WWG members and documentation status of related passport data

(see Excel file TOTAL-TRISECA-rye and wheat passport-data, available online <u>here</u>) Note:

- country codes: ISO alpha-3

- mandatory descriptors are in green and optional ones are in orange

- x = important descriptor; xx = highly important descriptor

	BEL	BGR	CZE	FRA	ITA	MNE	ROM	SVK	POL	total	%		MA	NDATOF	RY descri	ptor
Nbr of acces	87	65	17	183	14	26	56	67	20	535			all acc.	Land.	wild	cultivar
																——
INSTCODE	87	65	17	183	14	26	56	67	20	535	100.0	INSTCODE	XX			
ACCENUMB	87	65	17	183	14	26	56	67	20	535	100.0	ACCENUMB	xx	x		
COLLNUMB	87	0	0	0	0	26	56	40	18	227	42.4	COLLNUMB		x	хх	
COLLCODE	87	27	0	0	0	26	56	46	0	242	45.2	COLLCODE			хх	
GENUS	87	65	17	183	14	26	56	67	20	535	100.0	GENUS	хх			
SPECIES	87	65	17	183	14	26	56	67	20	535	100.0	SPECIES	хх			
SPAUTHOR	87	65	17	183	14	26	56	66	20	534	99.8	SPAUTHOR	x			
SUBTAXA	27	65	17	170	14	6	56	2	18	375	70.1	SUBTAXA				
SUBTAUTHO	0	55	0	122	0	0	56	2	14	249	46.5	SUBTAUTHO	R			
CROPNAME	87	65	17	147	14	26	56	67	0	479	89.5	CROPNAME				
ACCENAME	87	56	17	183	14	26	56	67	16	522	97.6	ACCENAME				
ACQDATE	87	65	17	181	14	26	56	62	20	528	98.7	ACQDATE				
ORIGCTY	87	65	17	183	14	26	56	67	20	535	100.0	ORIGCTY	хх			
COLLSITE	59	27	1	0	14	26	44	23	0	194	36.3	COLLSITE		x	хх	
LATITUDE	59	26	0	0	0	26	44	22	0	177	33.1	LATITUDE		x	хх	
LONGITUDE	59	26	0	0	0	26	44	22	0	177	33.1	LONGITUDE		x	хх	
ELEVATION	59	26	1	0	0	26	44	22	0	178	33.3	ELEVATION		x	хх	
COLLDATE	0	27	1	0	0	26	14	44	0	112	20.9	COLLDATE		x	хх	
BREDCODE	87	0	15	84	0	0	55	17	0	258	48.2	BREDCODE				x
SAMPSTAT	87	32	17	183	14	26	56	67	19	501	93.6	SAMPSTAT	хх			
ANCEST	0	0	12	74	14	0	56	16	0	172	32.1	ANCEST				x
COLLSRC	87	32	0	0	14	26	56	67	0	282	52.7	COLLSRC		x	хх	
DONORCODE	0	1	16	151	13	0	56	29	0	266	49.7	DONORCODE	x			
DONORNUM	0	26	0	79	0	0	56	0	0	161	30.1	DONORNUM	x			
OTHERNUMI	0	65	8	149	14	0	55	0	0	291	54.4	OTHERNUM	x			
DUPLICITE	0	0	16	183	9	26	0	0	0	234	43.7	DUPLICITE	x			
STORAGE	87	65	17	183	14	26	56	49	19	516	96.4	STORAGE				
MLSSTAT	87	65	17	183	13	0	56	67	0	488	91.2	MLSSTAT				
REMARK	0	49	0	0	14	26	48	46	0	183	34.2	REMARK				
GR_CLASS	87	65	17	0	0	0	0	67	0	236	44.1	GR_CLASS				
PLOIDY	87	65	17	183	14	0	0	66	0	432	80.7	PLOIDY				
REG_YEAR	0	65	1	84	0	0	0	9	0	159	29.7	REG_YEAR				x
SYNONYM_	0	0	1	0	0	0	0	0	0	1	0.2	SYNONYM_				
EXP_CODE	0	0	1	0	0	0	0	3	0	4	0.7	SITE DES				ł
HERBAR	0	65	17	183	14	0	0	24	0	303	56.6	HERBAR	<u> </u>			<u> </u>
PRINC_ATTR	0	65	0	0	0	0	0	67	0	132	24.7	PRINC ATTR	<u> </u>		1	<u> </u>
ENTRY_DATE	0	0	0	0	0	0	0	0	0	0	0.0	ENTRY_DATE			1	
MAN_CENTE	0	37	0	183	0	0	0	0	0	220	41.1	MAN_CENTE	R			
AVAILAB	0	65	17	183	14	0	0	67	0	346	64.7	AVAILAB				
AEGISSTAT	0	0	17	183	14	0	0	67	0	281	52.5	AEGISSTAT	1		1	1

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

Table 4. Number of rye selected candidate accessions per WWG members and documentation status of related passport data

(see Excel file TOTAL-TRISECA-rye and wheat passport-data, available online <u>here</u>) Note:

- country codes: ISO alpha-3

- mandatory descriptors are in green and optional ones are in orange

- <u>x</u> = mut	Jonani	uesci	iptor,	$\mathbf{x}\mathbf{x} = \mathbf{n}$	gniy in	іропа	ni uesi	Inploi	1		1				
	BGR	CZE	FRA	LVA	MNE	ROM	SVK	POL	total	%		MA	NDATOF	(Y descrip	otor
Nbr of access	15	36	50	6	5	72	25	141	350			all acc.	Land.	wild	cultivar
														<u> </u>	
INSTCODE	15	36	50	6	5	72	25	141	350	100.0	INSTCODE	XX		──	
ACCENUMB	15	36	50	6	5	72	25	141	350	100.0	ACCENUMB	XX	x		
COLLNUMB	0	0	0	0	5	72	20	141	238	68.0	COLLNUMB		x	XX	
COLLCODE	0	0	0	0	5	72	20	17	114	32.6	COLLCODE			хх	
GENUS	15	36	50	6	5	72	25	141	350	100.0	GENUS	хх			
SPECIES	15	36	50	6	5	72	25	141	350	100.0	SPECIES	хх			
SPAUTHOR	15	36	50	6	5	72	25	141	350	100.0	SPAUTHOR	x			
SUBTAXA	15	36	0	0	0	72	3	0	126	36.0	SUBTAXA				
SUBTAUTHO	15	4	0	0	0	72	3	0	94	26.9	SUBTAUTHO	R			
CROPNAME	15	36	50	6	5	72	25	0	209	59.7	CROPNAME				
ACCENAME	14	36	50	6	5	72	25	141	349	99.7	ACCENAME				
ACODATE	15	34	50	6	5	72	20	141	343	98.0	ACODATE				
ORIGCTY	15	36	50	6	5	72	25	141	350	100.0	ORIGCTY	xx			
	13	0	0	0	5	72	15	60	165	47.1			x	xx	
	13	0	0	0	5	72	- 13	74	105	47.1			~ v	~~	
LATTODE	15	0	0	0	5	72	7	74	1/1	40.9			^ 	~~	
LONGITUDE	13	0	0	0	5	72	/	74	1/1	48.9	LONGITUDE		x	XX	
ELEVATION	13	0	0	0	5	72	10	57	157	44.9	ELEVATION		x	XX	
COLLDATE	13	0	0	0	5	72	20	17	127	36.3	COLLDATE		x	XX	
BREDCODE	1	13	2	4	0	72	2	11	105	30.0	BREDCODE			<u> </u>	x
SAMPSTAT	15	36	50	6	5	72	25	141	350	100.0	SAMPSTAT	XX			
ANCEST	1	33	5	4	0	72	2	12	129	36.9	ANCEST				x
COLLSRC	13	13	0	6	5	72	25	14	148	42.3	COLLSRC		x	хх	
DONORCODE	0	6	39	6	0	72	21	34	178	50.9	DONORCODE	x			
DONORNUM	0	4	2	0	0	72	17	0	95	27.1	DONORNUM	x			
OTHERNUM	15	28	50	0	0	72	15	1	181	51.7	OTHERNUME	x			
DUPLICITE	13	36	50	6	5	0	17	0	127	36.3	DUPLICITE	x			
STORAGE	15	36	50	6	5	72	23	141	348	99.4	STORAGE				
MLSSTAT	15	36	50	6	0	72	25	141	345	98.6	MLSSTAT				
REMARK	0	0	0	2	5	72	23	63	165	47.1	REMARK				
GR CLASS	15	36	0	6	0	0	25	0	82	23.4	GR CLASS				
	15	36	0	6	0	0	11	0	68	19.4				<u> </u>	
REG_YEAR	0	20	0	4	0	0	1	0	25	7.1	REG_YEAR				x
SYNONYM_	0	4	0	0	0	0	0	0	4	1.1	SYNONYM_				
EXP_CODE	0	0	0	0	0	0	20	0	20	5.7	EXP_CODE			\vdash	
SITE_DES	0	0	0	0	0	0	16	0	16	4.6	SITE_DES			┝───	
	15	8 0	50 0	6	0	0	19	0	98 40	28.0 11.4	PRINC ATTR			<u> </u>	
ENTRY DATE	0	0	0	0	0	0	0	0	0	0.0	ENTRY DATE				
MAN_CENTE	14	0	50	0	0	0	0	0	64	18.3	MAN_CENTE	R			
AVAILAB	15	36	50	6	0	0	25	0	132	37.7	AVAILAB				
AEGISSTAT	0	36	50	0	0	0	25	0	111	31.7	AEGISSTAT				

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

Table 5. Number of wheat selected candidate accessions per WWG members and documentation status of related characterization and evaluation data

(see Excel file TOTAL TRISECA- Wheat-C&Edata, available online here).

	BEL	BGR	CZE	FRA	ITA	MNE	ROM	SVK	POL	total	%	
Nbr of accessions	87	65	17	183	14	0	29	67	28	490		
ACCENUMB	87	65	17	183	14	0	29	67	28	490	100.0	ACCENUMB
ACCENAME	87	56	17	183	14	0	29	67	23	476	97.1	ACCENAME
II/I												II/I
AWNEDNESS	87	65	17	183	14	0	29	21	1	417	85.1	AWNEDNESS
COLOUR	87	65	0	181	14	0	29	3	2	381	77.8	COLOUR
II/3 GLUME	07	C.F.	0	100	14	0	20	27	C	411	82.0	II/3 GLUME
COLOUR	87	65	0	183	14	0	29	27	6	411	83.9	COLOUR
HAIRINESS	87	65	17	183	0	0	29	26	0	407	83.1	HAIRINESS
II/5 SPIKE	07	65	10	102	4.4	0	20	0	0	204	00.4	II/5 SPIKE
DENSITY	87	65	16	183	14	0	29	0	0	394	80.4	DENSITY
HEIGHT	87	65	16	183	14	0	29	4	27	425	86.7	HEIGHT
II/7 1000-	07	65	16	4.0.0			20		20	145		II/7 1000-
	87	65	16	180	14	0	29	4	20	415	84.7	
CONTENT	0	41	16	0	0	0	21	0	0	78	15.9	CONTENT
II/9 PRINCIPAL												II/9 PRINCIPAL
	0	65	0	0	14	0	23	0	0	102	20.8	
	0	65	0	0	14	0	0	0	0	79	16.1	
II/11 LODGING			Ű			Ŭ	Ŭ				1011	II/11 LODGING
INTENSITY	87	65	16	183	0	0	0	4	28	383	78.2	INTENSITY
	0	0	16	159	0	0	29	0	0	204	41.6	
II/13 S TO	0	0	10	155	0	0	25	0	0	204	41.0	II/13 S TO
STRIPE RUST	87	65	16	159	0	0	29	4	2	362	73.9	STRIPE RUST
II/14 S TO	07	65	0	150	0	0	20	4	0	252	72.0	II/14 S TO
IV15 S TO	07	05	0	139	0	0	29	4	9	555	72.0	IV15 S TO
POWDERY	87	0	16	159	0	0	29	4	9	304	62.0	POWDERY
II/16 S TO	07	0	0	150	0	0	0	4	C	25.0	52.2	II/16 S TO
LEAF BLOTCH	87	0	0	159	0	0	0	4	6	256	52.2	LEAF BLOTCH
GLUME	0	0	0	0	0	0	0	0	0	0	0.0	GLUME
II/18 S TO	_		_	_	_	_	_	_	_			II/18 S TO
HEAD BLIGHT	0	37	0	0	0	0	0	4	5	46	9.4	HEAD BLIGHT
EYESPOT	0	0	0	0	0	0	0	0	0	0	0.0	EYESPOT
II/20 S TO	-			-	-	-	-	-	-			II/20 S TO
TAKE-ALL	0	0	0	0	0	0	0	0	0	0	0.0	TAKE-ALL
SPOT	0	0	0	0	0	0	0	0	0	0	0.0	SPOT
II/22 Zeleny		Ű	Ť	Ű			- Ŭ	Ű		Ť	0.0	II/22 Zeleny
Test	0	33	16	0	0	0	0	0	0	49	10.0	Test

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

Table 6. Number of rye selected candidate accessions per WWG members and documentation status of related characterization and evaluation data

(see Excel file TOTAL TRISECA- Rye-C&Edata, available online here).

	BGR	CZE	FRA	LVA	MNE	ROM	SVK	POL	total	%
Nbr of accessions	15	20/36	50	6		15/72	25	578	709	
ACCENUMB	15	20	50	6		15	25	578	709	100.0
ACCENAME	14	20	50	6		15	25	577	707	99.7
1-COUNTRY	15	20	50	6		15	25	0	131	18.5
2-YEAR	15	20	50	6		15	25	578	709	100.0
3-GROWTH	15	20	50	6		15	25	578	709	100.0
4-PLANT HEIGHT (clas)	15	20	50	6		0	3	565	659	92.9
5-PLANT HEIGHT (cm)	15	20	50	6		0	3	565	659	92.9
-POWDERY MILDEW RESISTANC	15	20	50	5		15	3	413	521	73.5
7-STEM RUST RESISTANCE	0	20	50	0		0	3	0	73	10.3
8-LEAF RUST RESISTANCE	15	20	50	5		15	0	416	521	73.5
9-FUSARIUM RESISTANCE	15	1	50	0		0	1	0	67	9.4
10-EYESPOT RESISTANCE	0	1	0	0		0	0	0	1	0.1
11-1000 KERNEL WEIGHT (clas)	15	1	50	6		15	3	433	523	73.8
12-1000 KERNEL WEIGHT (g)	15	20	50	6		15	3	433	542	76.4
13-PROTEIN CONTENT	15	20	0	6		0	2	0	43	6.1

(TRIticum and SECale in AEGIS = TRISECA)

Activity Report

Table 7. Current status of the AEGIS collection in the Wheat Working Group, after completion of the TRISECA Activity (updated 15 March 2018)

Country	Passport and C&E data updated in EWDB	NC approves list of candidates accessions	NFP updates EURISCO database	No. of new accessions flagged as AEGIS in EURISCO (15 March 2018)
Belgium			Pending	
Bulgaria				80
Czech Republic	Ø	M	Ø	53
France	⊡		Pending (MoU has to be signed first)	
Italy			Pending	
Latvia				6
Montenegro		Pending	Pending	
Poland				Pending
Romania				128
Slovakia	Pending	Pending	Pending	
Total				267