

A HOLISTIC APPROACH FOR VITIS: TARGETING GENETIC, AMPELOGRAPHIC AND EPIGENETIC POOLS

Dr Evangelia Avramidou Institute of Mediterranean Forest Ecosystems, ELGO-DIMITRA, Athens

10-10-2023 Kavala, Greece

Vitis Vinifera genetic diversity

- ➤The cultivated grapevine (V. vinifera L. subsp. vinifera) is believed to have been derived from its wild closely related form V. vinifera. L. subsp. Sylvestris.
- Recent data (OPEKEPE, 2019) confirm that 220 cultivars and landraces are currently cultivated in Greece.
- ➤A combined approach using ampelographic and microsatellite markers has been undertaken to study the genetic diversity of 96 genotypes belonging to 36 V. vinifera cultivars.

Plant Genetic Resources: Characterization and Utilization

cambridge.org/pgr

Research Article

*Equal contribution.

Cite this article: Tsivelikas AL, Avramidou EV, Ralli PE, Ganopoulos IV, Moysiadis T, Kapazoglou A, Aravanopoulos FA, Doulis AG (2022). Genetic diversity of Greek grapevine (vitis vinifero L) cultivars using ampelographic and microsatellite markers. Plant Genetic Resources: Characterization and Utilization 1-13. https://doi.org/10.1017/ S147926212200020X

Received: 23 June 2021 Revised: 1 June 2022 Accepted: 20 September 2022

Key words: Conservation in genebanks; genetic structure; grapevine germplasm; landraces; phenotypic and molecular characterization

Author for correspondence: Andreas G. Doulis, E-mail: andreasntoulis@yahoo.gr; doulis@elgo.gr Genetic diversity of Greek grapevine (*Vitis vinifera* L.) cultivars using ampelographic and microsatellite markers

Athanasios L. Tsivelikas^{1,*} , Evangelia V. Avramidou^{2,*}, Parthenopi E. Ralli³, Ioannis V. Ganopoulos³, Theodoros Moysiadis^{3,4}, Aliki Kapazoglou⁵, Filippos A. Aravanopoulos⁶ and Andreas G. Doulis⁵

¹International Center for Agricultural Research in the Dry Areas (ICARDA), Genetic Resources Section, Av. Mohamed Belarbi Alaoui, Al-Irfane, 101 12 Rabat, Morocco; ²Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ex. NAGREF.), Laboratory of Genetics and Biotechnology, Terma Alkmanos, 11528 Ilissia, Athens, Greece; ³Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-DIMITRA (ex. NAGREF.), Laboratory of Genetics and Biotechnology, Terma Alkmanos, Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus; ³Institute of Oliver Tree, Subtropical Plants & Viticulture, Hellenic Agricultural Organization-DIMITRA (ex. NAGREF.), Laboratory of Flant Biotechnology & Genomic Resources, Kastorias 32A, GR-71307 Heraklion, Greece and ⁶Laboratory of Forest Genetics and Tree Breeding, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

Abstract

Grapevine (Vitis vinifera L.) is a major worldwide crop of high economic importance, tightly interwoven with the traditions and the culture of many civilizations. The Greek vineyard is one of the oldest in the world composed of an ample number of highly diverse indigenous landraces. However, over the last decades the local cultivated grapevine germplasm has undergone a drastic reduction of diversity, due to the established market preferences for international varieties. In the current work a combined approach involving both, ampelographic traits and microsatellite markers has been undertaken, to study the genetic diversity within and among 96 grapevine genotypes belonging to 36 V. vinifera subsp. vinifera cultivars, predominantly representing autochthonous Greek landraces. Results revealed high genetic diversity for the Greek cultivars yielding a mean number of alleles per locus 14.69 and mean polymorphic information content 0.848. Hierarchical cluster analysis, employing both, ampelographic and microsatellite data, showed a clear distinction based on the origin of the germplasm; Anatolian versus Mediterranean. Principal component analysis, based on the most informative ampelographic traits, coupled to the results from genetic structure analysis further corroborated the proposal of germplasm differentiation on the basis of geographic origin. This information can be further utilized for the reconstitution of the Greek vineyard and can significantly contribute towards a rational conservation and utilization strategy for breeding or for direct cultivation of the Greek indigenous grapevine germplasm.

Introduction

Grapevine (Vitis vinifera L) is a crop of major economic importance that retains fundamental symbolisms for many cultures worldwide. The cultivated grapevine (V. vinifera L. subsp. vinifera) is believed to have been derived from its wild closely related form V. vinifera L. subsp. sylvestris (Zohary et al., 2012). Archaeological records suggest that the primo-domestication of the grapevine started in the Near East by the late Neolithic period (Zohary, 1996; This et al., 2006) or in the neighbouring Transcaucasia approximately 8000-6000 BC (Levadoux, 1956, cited by Olmo, 1996). However, uncertainty remains about the pare and the period of original domestication (This et al., 2006) with fifteent studies to sup-

Ampelographic and microsatellite results

Ampelographic and microsatellite results for Cretan biotypes

- Evidence showed that Crete grapevine cultivars and winemaking date back to 2300 BC.
- In this study 51 genotypes belonging to 7 different traditional cultivars, presumed autochthonous to the island of Crete, were selected for their wine-producing potential and classified by 51 ampelographic descriptors.
- ➢In addition, 5 genotypes belonging to 2 nonautochthonous cultivars were included as outgroup controls.

د چرچ life

MDPI

Article

Analysis of Wine-Producing *Vitis vinifera* L. Biotypes, Autochthonous to Crete (Greece), Employing Ampelographic and Microsatellite Markers

Evangelia V. Avramidou ^{1,2, s,4}⁽⁶⁾, Ioannis Masaoutis ^{3,†}, Theodora D. Pitsoli ⁴, Aliki Kapazoglou ⁴, Maria Pikraki ², Emmanouil A. Trantas ⁵⁽⁶⁾, Michael Nikolantonakis ^{2,1,‡} and Andreas G. Doulis ^{2,4}⁽⁶⁾

- ¹ Hellenic Agricultural Organization ELGO "DIMITRA" (ex. NAGREF), Institute of Mediterranean Forest Ecosystems, Terma Alkmanos, Ilissia, 11528 Athens, Greece
- Institute of Olive Tree, Subtropical Plants and Viticulture (IOSV), Laboratory of Plant Biotechnology & Genomic Resources, Hellenic Agricultural Organization ELGO "DIMITRA" (ex. NACREF), Kastorias 32A, 73107 Herakino, Greece, maria.pikraki@gmail.com (M.P.); andreasntoulis@yahoo.gr (M.N.)
- ³ Winery of Agrunion of Heraklion, Inatou 32, 71303 Heraklion, Greece; masaoutis@gmail.com ⁴ Institute of Olive Tree, Subtropical Plants and Viticulture (IOSV). Department of Grapevine, Hellenic Acricultural Oreanization ELGO "DIMITRA" (ex. NAGER), Lykovirsi, 14123 Athens, Greece;
- Hellenic Agricultural Organization ELGO "DIMITRA" (ec. NAGREE), Lykovrissi, 14123 Athens, Gree pitsoli@elgo.gr (T.D.P.); kapazoglou@elgo.gr (A.K.) Department of Agriculture, Laboratory of Biological and Biotechnological Applications, Hellenic
- Mediterranean University, 73133 Heraklion, Greece; mtrantas@hmu.gr
- * Correspondence: doulis@elgo.gr (E.V.A.); aevaggelia@yahoo.com (A.G.D.)
- These authors contributed equally to this work.
 Deceased.

Abstract: Vitis vinifera ssp. vinifera (domesticated grapevine) includes thousands of cultivars, which are classified according to their main uses, as wines, fresh fruits or dried raisins and sultanas since ancient times. Evidence showed that Crete grapevine cultivars and winemaking date back to 2300 BC. In this study, fifty-one genotypes belonging to seven different traditional Vitis vinifera cultivars, presumed autochthonous to the island of Crete, were selected for their wine-producing potential and classified by 51 ampelographic descriptors. In addition, five genotypes belonging to two non-autochthonous cultivars were included as out-group controls. Subsequently, in order to characterize genetic diversity, establish genetic relationships within and between cultivars and solve accession-labeling problems, genotypes were fingerprinted employing Simple Sequence Repeat (SSR or microsatellite) markers. Four of the autochthonous cultivars namely 'Vidiano', 'Vilana', 'Plvto', and 'Moschato Spinas' are used in the local economy for blanc (white) wine production while the rest, namely 'Kotsifali', 'Liatiko' and 'Mantilari' for Noir (red) wines. The two cultivars employed as out-group were 'Moschato Samou' and 'Moschato Alexandrias': both white wine producers. Ampelography-based clustering grouped the majority of genotypes along cultivar-specific clusters. All three Moschato cultivars formed a distinct clade pointing to the non-autochthonous origin of 'Moschato Spinas'. A total of one hundred and thirteen (113) SSR alleles were amplified from thirteen (13) SSR loci, with an average number of alleles per locus equal to 10.23 revealing ample genetic polymorphism. The cumulative probability of identity was also quite high (3.389×10^{-16}) .

check for updates Citation: Avramidou, EV.;

Masaoutis, I.; Pitsoli, T.D.; Kapazoglou, A.; Pikraki, M.; Trantas, E.A.; Nikolantonakis, M.; Loulis, A.G. Analysis of Wne-Poducing Vitis tritifera I. Biotypes, Autochthonous to Crete (Greece). Employing Ampelographic and Microsatellite Markers. Ilife 2023, 13, 220. https:// doi.org/10.3390/life13010220

Academic Editors: Kousuke Hanada and Yoshiteru Noutoshi Received: 13 December 2022 Revised: 10 January 2023

Results

1.00

Manhattan dissin ilarity coefficient

0,75

MSA 490

MSA 491 MSP 012 MSP 013 MSP 014 MSP 017 MAL 478 MAL 479

MAL481

0.00

0.25

Microsatellite markers

Results

- ➢Within the island of Crete: (i) old/autochthonous, (ii) widespread non-autochthonous and (iii) locally, on-farm selected hybrids, derived from crosses within and between autochthonous cultivars or outcrosses with other non-autochthonous cultivars.
- Present cultivar assignment based on ampelographic data agreed with grouping based on molecular markers on the basis of forming monophyletic or near monophyletic (cultivar-specific) clusters.
- Nevertheless, topologies between the two similarity dendrograms exhibited some local differences. With the present study, the number of SSR markers employed (a total of thirteen; 13), as well as the degree of SSR polymorphism revealed due to the inherent within cultivar genetic variability allowed for individual genotype discrimination, i.e., clonal differentiation within each cultivar.

Genotyping toolbox

- In this review we presented the most frequently used molecular markers, which have been used on Vitis germplasm.
- ➤ We discussed the scientific progress that led to the new strategies being implemented utilizing state-of-the-art next generation sequencing technologies.
- Additionally, we attempted to delimit the discussion on the algorithms used in phylogenetic analyses and differentiation of grape varieties.
- Lastly, the contribution of epigenetics is highlighted to tackle future roadmaps for breeding and exploitation of Vitis germplasm.

Frontiers | Frontiers in Plant Science

TYPE Review PUBLISHED 26 April 2023 DOI 10.3389/fpls.2023.1139647

Check for updates

OPEN ACCESS

REVIEWED BY

EDITED BY Francesco Sestili, University of Tuscia, Italy

Clizia Villano, University of Naples Federico II, Itały Luisa C. Carvalho, Higher Institute of Agronomy, University of Lisbon, Portugal

*CORRESPONDENCE Emmanouil Trantas

i mtrantas@hmu.gr Filippos Ververidis ververidis@hmu.gr

[†]These authors have contributed equally to this work and share first authorship

SPECIALTY SECTION This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science

RECEIVED 07 January 2023 ACCEPTED 27 March 2023 PUBLISHED 26 April 2023

CITATION

Tympakianakis S, Trantas E, Avramidou EV and Ververidis F (2023) Vitis vinifera genctyping toolbox to highlight diversity and gemplasm identification. Front Plant Sci. 14:1139647. doi: 10.3389/fpls2023.1139647

COPYRIGHT

€ 2023 Tympakianakis, Trantas, Avramidou and Ververidis. This is an open-access article distributed under the terms of the Creative Commons Attribution Ucense (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted

Vitis *vinifera* genotyping toolbox to highlight diversity and germplasm identification

Stylianos Tympakianakis^{1†}, Emmanouil Trantas^{1,2*†}, Evangelia V. Avramidou³ and Filippos Ververidis^{1,2*}

¹Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Herakion, Greece, ¹Institute of Agri-Food and Life Sciences, Research Center of the Hellenic Mediterranean University, Herakion, Greece, ³Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organisation "DIMITRA", Athens, Greece

The contribution of vine cultivation to human welfare as well as the stimulation of basic social and cultural features of civilization has been great. The wide temporal and regional distribution created a wide array of genetic variants that have been used as propagating material to promote cultivation. Information on the origin and relationships among cultivars is of great interest from a phylogenetics and biotechnology perspective. Fingerprinting and exploration of the complicated genetic background of varieties may contribute to future breeding programs. In this review, we present the most frequently used molecular markers, which have been used on Vitis germplasm. We discuss the scientific progress that led to the new strategies being implemented utilizing state-of-the-art next generation sequencing technologies. Additionally, we attempted to delimit the discussion on the algorithms used in phylogenetic analyses and differentiation of grape varieties. Lastly, the contribution of epigenetics is highlighted to tackle future roadmaps for breeding and exploitation of Vitis germplasm. The latter will remain in the top of the edge for future breeding and cultivation and the molecular tools presented herein, will serve as a reference point in the challenging years to come

KEYWORDS

Vitis, biodiversity, genotyping, molecular markers, next generation sequencing, simple sequence repeats, microsatellites, single nucleotide polymorphism

Epigenetic vs Genetics

Epigenetics is defined as mechanisms that regulate gene expression without base sequence alteration.

Main epigenetic mechanisms:

- DNA methylation (addition of a CH3 in a cytosine)
- Modification of histones (phosphorylation, acetylation)

≻mRNAs

Epigenetic transgenerational inheritance

- ➤Knowledge of the regulatory mechanisms involved in adaptive epigenetic responses help may to guide management genetic 0 resources and plant breeding of Vitis.
- Studies have shown that if an environmental stress is maintained long enough epigenetic alterations can reach equilibrium frequencies and transmitted in next generations.
- Potential role in adaptation and evolution.

frontiers in Plant Science REVIEW published: 12 January 2021 doi: 10.3389/fpls.2020.613004

Epigenetic Changes and Transcriptional Reprogramming Upon Woody Plant Grafting for Crop Sustainability in a Changing Environment

Aliki Kapazoglou1*, Eleni Tani², Evangelia V. Avramidou³, Eleni M. Abraham4, Maria Gerakari², Stamatia Megariti², Georgios Doupis⁵ and Andreas G. Doulis⁵

¹ Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Demoter (HAO-Demeter), Athens, Greece, ³ Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece, ³ Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Athens, Hellenic Agricultural Organization-Demoter (HAO-Demeter), Athens, Greece, ⁴ Laboratory of Range Science, Faculty of Forestry and Natural Environment, Aristotle University of Thessaloniki, Greece, ⁶ Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Sub-Tropical Crops and Viticulture, Hellenic Agricultural Crognization-Demoter (HAO-Demeter) (H. NAGREF), Herakion, Greece

Plant grafting is an ancient agricultural practice widely employed in crops such as woody fruit trees, grapes, and vegetables, in order to improve plant performance. Successful grafting requires the interaction of compatible scion and rootstock genotypes. This involves an intricate network of molecular mechanisms operating at the graft junction and associated with the development and the physiology of the scion, ultimately leading to improved agricultural characteristics such as fruit quality and increased tolerance/resistance to abiotic and biotic factors. Bidirectional transfer of molecular signals such as hormones, nutrients, proteins, and nucleic acids from the rootstock to the scion and vice versa have been well documented. In recent years, studies on rootstock-scion interactions have proposed the existence of an epigenetic component in grafting reactions. Epigenetic changes such as DNA methylation, histone modification, and the action of small RNA molecules are known to modulate chromatin architecture. leading to gene expression changes and impacting cellular function. Mobile small RNAs (siRNAs) migrating across the graft union from the rootstock to the scion and vice versa mediate modifications in the DNA methylation pattern of the recipient partner, leading to altered chromatin structure and transcriptional reprogramming. Moreover, graft-induced DNA methylation changes and gene expression shifts in the scion have been associated

OPEN ACCESS Edited by:

Rosario Paolo Mauro,

University of Catania, Italy Reviewed by:

Yuan Huang, Huazhong Agricultural University, China Toshi Marie Foster, The New Zealand Institute for Plant and Food Research Ltd., New Zealand

Ting Wu, China Agricultural University, China

> *Correspondence: Aliki Kapazoglou akapazoglou@gmail.com Andreas G. Doulis andreas.doulis@nagref-her.gr

Specialty section: This article was submitted to

Crop and Product Physiology, a section of the journal Frontiers in Plant Science

Received: 01 October 2020 Accepted: 10 December 2020 Published: 12 January 2021 Citation:

Kapazoglou A, Tani E,

Vitis sylvestris : a new era for genetic and epigenetics

Grafting is an ancient agricultural propagation technique widely used to improve plant performance, in terms of yield, quality and resilience to abiotic and biotic stresses. It involves the merging of two genetically different plant parts, the rootstock, and the scion, in such a manner that the two parts join and grow as a single plant.

Woody plants are clonally propagated by asexual reproduction. This would favor stable transgenerational transmission of graft-induced epigenetic changes such as DNA methylation, in woody crops, which may lead to phenotypic variation and ultimately to novel varieties with improved traits.

ECP/GR

Epigenetic transgenerational inheritance in Vitis: some examples

Multiple examples showed effects of scion/rootstock RNA movement along grapevine grafts as well as graft-induced transcriptional reprogramming with respect to rootstock specificity and plant performance.

Differential and drought stress-specific accumulation of miRNAs in auto-grafts and reciprocal heterografts of Cabernet Sauvignon and M4, revealed a drought tolerant hybrid (Pagiarani et al 2017)

➢Analysis of the effect of rootstock on Cabernet Sauvignon berries demonstrated that modulation of auxin related genes and the rate of ripening varies according to the rootstock used in the graft (Corso et al., 2016).

Epigenetic transgenerational inheritance in Vitis: some examples

reference-unbiased ≻A superpangenome of the North American wildgrape species (Vitis spp.) reveals genus-wide association with adaptive traits.

>This study highlights how a referenceunbiased super-pangenome can reveal the genetic basis of the adaptive traits wild relatives, potentially from accelerating crop breeding research.

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.27.545624; this version posted June 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A reference-unbiased super-pangenome of the North American wild grape species (Vitis spp.) reveals genus-wide association with adaptive traits

Noé Cochetel¹, Andrea Minio¹, Andrea Guarracino^{2,3}, Jadran F. Garcia¹, Rosa Figueroa-Balderas¹, Mélanie Massonnet¹, Takao Kasuga⁴, Jason Londo⁵, Erik Garrison², Brandon Gaut⁶, Dario Cantu^{1,7*}

¹Department of Viticulture and Enology, University of California Davis, Davis, CA, USA. ²Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.

³Genomics Research Centre, Human Technopole, Viale Rita Levi-Montalcini, Milan, Italy,

⁴Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, CA, USA.

⁵Horticulture Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, USA.

⁶Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA.

⁷Genome Center, University of California Davis, Davis, CA, USA.

*Email: dacantu@ucdavis.edu

Abstract

Capturing the genetic diversity of wild relatives is crucial for improving crops because wild species are valuable sources of agronomic traits that are essential to enhance the sustainability and adaptability of domesticated cultivars. Genetic diversity across a genus can be captured in superpangenomes, which provide a framework for interpreting genomic variations. Here we report the sequencing, assembly, and annotation of nine wild North American grape genomes, which were phased and scaffolded at chromosome scale. We generated a reference-unbiased super-pangenome using pairwise whole-genome alignment methods, revealing the full resolution of genomic diversity among wild grape species from sequence to gene level. The pangenome graph captured genomic variation between haplotypes within a species and across the different species, and it accurately assessed the similarity of hybrids to their parents. The species selected to build the pangenome ensured a comprehensive representation of the genus, as illustrated by capturing known allelic variants in the sex-determining region and for Pierce's disease resistance loci. Using pangenome-wide association analysis (pan-GWAS), we demonstrated the utility of the superpangenome by effectively mapping short-reads from genus-wide samples and identifying loci associated with salt tolerance in natural populations of grapes. This study highlights how a

Vitis sylvestris : a new era for studying genetic and epigenetics breeding strategies???

- Collection of various Vitis sylvestris sp. populations from different locations.
- >Ampelographic description.
- Genetic characterization with microsatellite markers (that is already achieved)
- Epigenetic study and training of plants to resistance to drought or other biotic stress.
- Grafting to local varieties and monitor their characteristics (interaction of genetic and epigenetic pools).

THANK YOU