The BRIDGE project: From 1 – 20,000 barley genomes

Nils Stein

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben & Georg-August University Göttingen, CiBreed
Barley – a globally grown crop species

Barley Total Harvested Area (ha)

Barley diversity – modern cultivars vs. genetic resources

- Modern cultivars are adapted to and bred for the average conditions in specific geographical regions (climate, latitude, altitude etc.)
- Genetic diversity decreased as a consequence
- Lacking plasticity for further adaptation as climatic conditions become more variable
Global barley diversity

- Phenotypic diversity = Genomic diversity in barley is high
- Allelic Diversity important tool in functional genomics or breeding
- Natural diversity: domesticated / wild genepool
BRIDGE: Biodiversity infoRmatics to close the gap from genome Information to educated utilization of Diversity hosted in GEnebanks

- Interactive haplotype browser
- Comparison to existing marker data to guide pre-breeding

Interfaces to other systems
- EURISCO
- EDBD
- transPLANT
- de.NBI
- SeedSeq
- Digital Seed Bank
- GENESYS

Primary data analysis

Field based phenotyping
BRIDGE project: GBS of >20,000 barley accessions.

- WGS / exome capture of selected accessions
- Historic evaluation data (morphologic and agronomic)
- Passport and geo-reference information
- Ear- and seed phenotyping at harvest
GBS of >20,000 barley accs.

- GBS (PstI/MspI) library preparation (Wendler et al. 2014; >180-plex barcoded)
- Bioinformatics pipeline (Mascher et al. 2013):
 - Minimal read depth per genotype: 2x
 - Maximal fraction of missing calls: 10%
 - Both alleles at least once in homozygous state
Diversity in barley - whole collection

22,621 samples
171,263 SNP

PC1 (1.3 %)
PC2 (1.1 %)

domesticated
wild
unknown
Representativeness of IPK collection
Diversity in domesticated barley
Diversity in domesticated barley
GWAS for row-type

Genotypes: SNPs with a MAF ≥1% (19,507 SNPs).

Software: GAPIT R package (Lipka et al. 2012), using a mixed linear model, kinship, PC1/2 as covariants
GWAS for awn roughness
GWAS vs BSA for awn roughness

position in reference genome

allele freq.

-\log_{10} (p)

raw1
TILLING to confirm raw1 function

Non-Synonymous Synonymous Splice site mutation

8993-1_8 → WT/WT
8993-1_7 → MT/MT
8993-1_2_10 WT/WT
8993-1_2_8 WT/MT
8993-1_2_5 MT/MT
Genebank genomics

- GWAS for simple traits
- GWAS for more complex and agronomically relevant traits
how about historical (legacy) data in genebanks?

unbalanced legacy data from regeneration cycles

→ manual quality assessment

• checking sowing date and off-season sowing date
• checking extreme data points

Outlier detection based on re-scaled median absolute deviation and Bonferroni-Holm test

→ describing the phenotypic diversity of the collection / Estimating heritability and BLUEs

→ examine the data suitability for selection of accessions

re-sampling study
two-fold cross validation

Barley multiplications at IPK Genebank
Value of genebank legacy data for GWAS?
GWAS for resistance to soil-borne viruses

1894 accessions tested

collaboration with JKI QLB, Ordon+Habekuss
The BRIDGE portal

https://bridge.ipk-gatersleben.de
The BRIDGE portal

https://bridge.ipk-gatersleben.de
Summary

BRIDGE – a complete barley ex situ collection characterized by GBS

- Diversity landscape of the collection – what is the context of global diversity
- GWAS
- Collection management
- Better informed selection of genetic resources in pre-breeding
Acknowledgements

Genebank genomics highlights the diversity of a global barley collection

Sara G. Milner, Matthias Jost, Shin Taketa, Elena Rey Mazón, Axel Himmelbach, Markus Oppermann, Stephan Weise, Helmut Knüpffer, Martín Basterrechea, Patrick König, Danuta Schüler, Rajiv Sharma, Raj K. Pasam, Twan Rutten, Ganggang Guo, Dongdong Xu, Jing Zhang, Gerhard Herren, Thomas Müller, Simon G. Krattinger, Beat Keller, Yong Jiang, Maria Y. González, Yusheng Zhao, Antje Habekuß, Sandra Färber, Frank Ordon, Matthias Lange, Andreas Börner, Andreas Graner, Jochen C. Reif, Uwe Scholz, Martin Mascher and Nils Stein

Funding:

SAW Pakt f. Forschung und Innovation
Thanks!