

Alliance

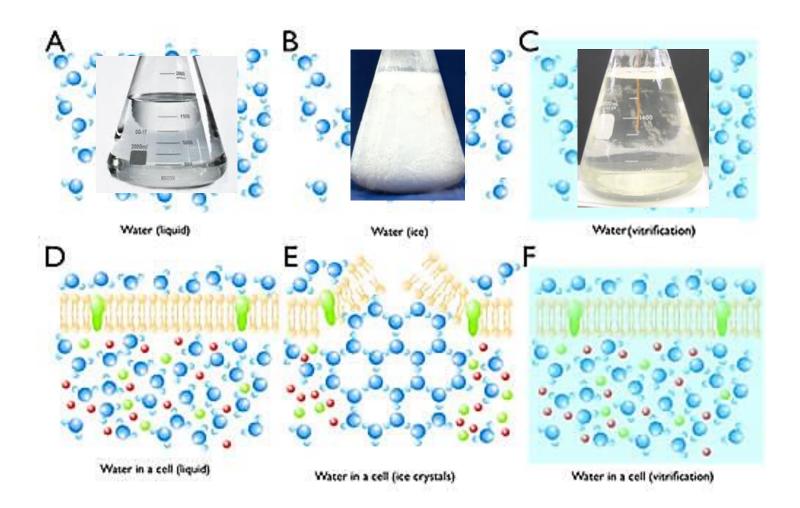
An introduction to plant cryopreservation Bart Panis

What is cryopreservation?

Cryopreservation

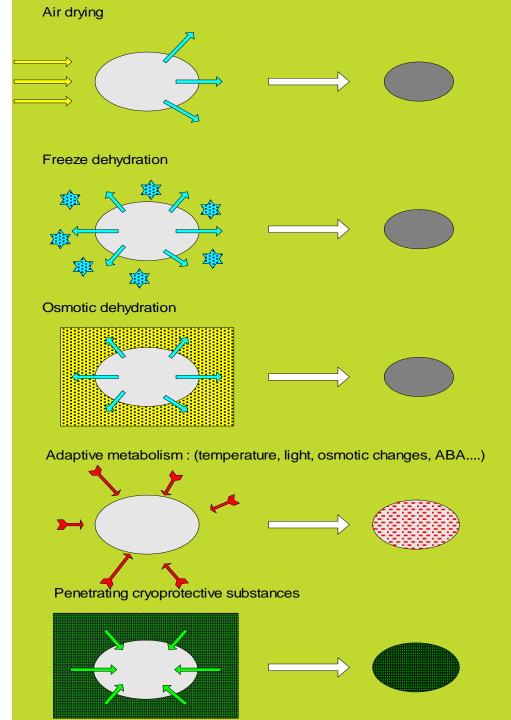
- Cryopreservation is a process where cells or whole tissues are preserved by cooling to low sub-zero temperatures, such as (typically) –196 °C (the boiling point of liquid nitrogen).
- At these low temperatures, any biological activity, including the biochemical reactions that would lead to cell ageing (and cell death), is effectively stopped.
- Practically: storage happens in big Dewar flasks filled with liquid nitrogen

Freezing induced injury


- 1/ Effect of low (not always "freezing" temperatures) (membrane stability, metabolism,.....)
- 2/ Mechanical effects of extracellular ice crystals at cell surfaces (breaking of tissues, disconnection of cells)
- 3/ Dehydration related effects (In nature, during cryopreservation when slow freezing rates are applied). Results in solution and mechanical effects

4/ Injury due to intracellular ice formation
 ⇒ Mechanical disruption of protoplasmatic structure, loss of semi-permeability

Vitrification



Prevention of intracellular ice crystal formation. through '<u>vitrification</u>'

HOW???

1/ Concentration of cellular solution

2/ Rapid cooling and thawing rates

- **Problem**: Most hydrated tissues do not withstand dehydration to moisture contents needed for vitrification (20-30 %). Exceptions are pollen, seed and somatic embryo of orthodox species.
- The key for successful cryopreservation thus lies in the induction of tolerance towards dehydration.
- How ?

Non-colligative effects of

1/ Addition of cryoprotective substances (Sugars, glycerol, DMSO,...) / Loading

2/ Adaptive metabolism (hardening)

Different cryopreservation protocols

Methods for cryopreservation

- Dormant bud cryopreservation
 - Slow (classical) freezing
 - Encapsulation-dehydration
 - Droplet freezing
 - Fast Preculture (+ dehydration) freezing
- Vitrification (PVS2, PVS3,...)
- Encapsulation-vitrification
- Droplet vitrification
- V-cryo-plate procedure
- D-cryo plate procedure

Cryopreservation of dormant buds

Cecil Stushnoff, **1987** (dormant bud cryopreservation of apple)

Cold Hardening (Dormant field material)

Air dehydration at -5°C to 25-35% MC

Freeze dehydration at -1°C/hr to -35°C – hold 24hr

Advantage no in vitro phase: grafting

Parameters to be optimised

- Hardening
- Cooling rate
- Holding temperature

Vitrification

Sakai et al., **1990** (PVS2 vitrification nucellar cells of navel orange) <u>Typical protocol</u>

- Loading : LS : 2 M glycerol + 0.4 M sucrose
- Dehydration : PVS2 : 30 % glycerol + 15 % EG + 15 % DMSO + 0.4 M sucrose
- Following freezing and thawing : deloading in 1.2 M sucrose

Cold Hardening

Sugar hardening + osmotic dehydration + penetrating cryoprotectants (at 0°C or RT)

Parameters to be optimised

- Sugar hardening
- Loading
- Dehydration with vitrification solution (temp, time, composition,...)

Droplet-vitrification

Towill and Jarret, 1992 (First "droplet vitrification" on sweet potato)

COMBINATION OF

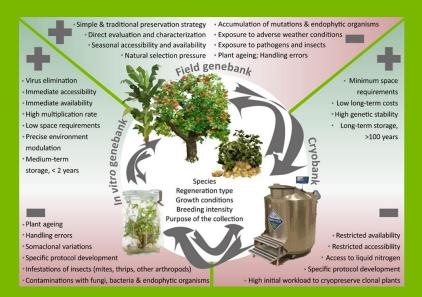
• Classical vitrification (with PVS2 or PVS3 or....)

AND

• The application of ultra fast freezing and ultra fast warming (to avoid respectively crystallization and cold crystallization).

How to obtain more rapid freezing rates ?

- Freezing in partially solidified nitrogen (sludge) which has a temperature of about –208°C (instead of –196°C in case of liquid nitrogen)
- A closer contact between the tissue and the cooling agent.
 - Cryotubes (about 6°C/sec)
 - Semen straws (about 60°C/sec)(potato)
 - droplet vitrification (about 130°C/sec)



Application 1. Storage of genetic resources

Methods of conservation

- In situ : Conservation in 'normal' habitat
 - rain forests, gardens, farms
- Ex Situ :
 - Seed collections
 - Field collection, Botanical gardens
 - In vitro collection
 - Normal growth
 - Slow growth (temp), O_2 , H_2O , medium ~)
 - Cryopreservation (-196°C)
- (DNA Banks)

CIAT Bean genebank, Colombia

> 1 million seed samples

Many Critical Food and Nutrition Security Crops Cannot be Conserved in Perpetuity by Seeds

- Seedless crops
- Crops that do not breed true from seeds
- Crops with recalcitrant or shortlived seeds

Solution :

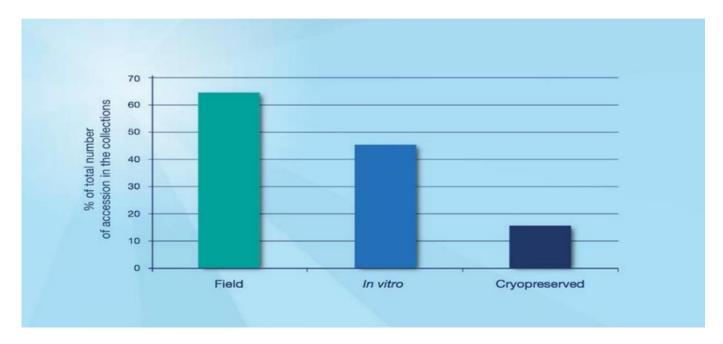
- cryopreservation of seed or embryos
- Store vegetative tissues

Methods of conservation

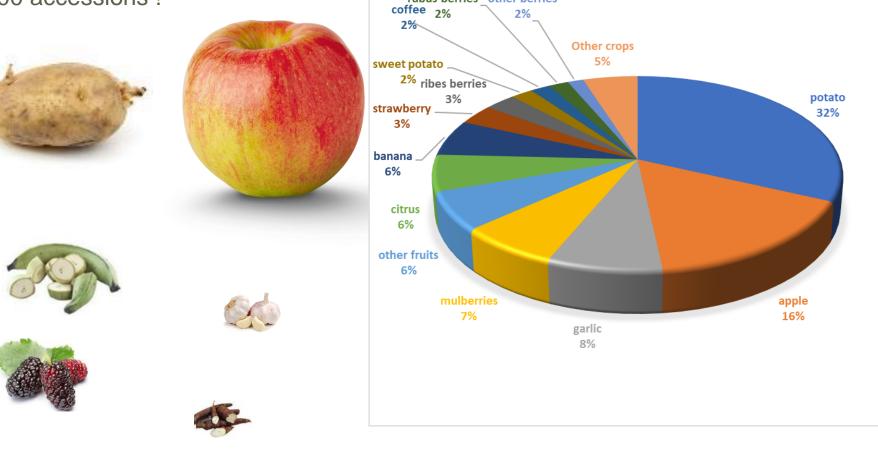
- In situ : Conservation in 'normal' habitat
 - rain forests, gardens, farms
- Ex Situ :
 - Seed collections
 - Field collection, Botanical gardens
 - In vitro collection
 - Normal growth
 - Slow growth (temp \lor , O₂ \lor , H₂O \lor , medium ~)
 - Cryopreservation (-196°C)
- (DNA Banks)

State of the art of Plant cryopreservation

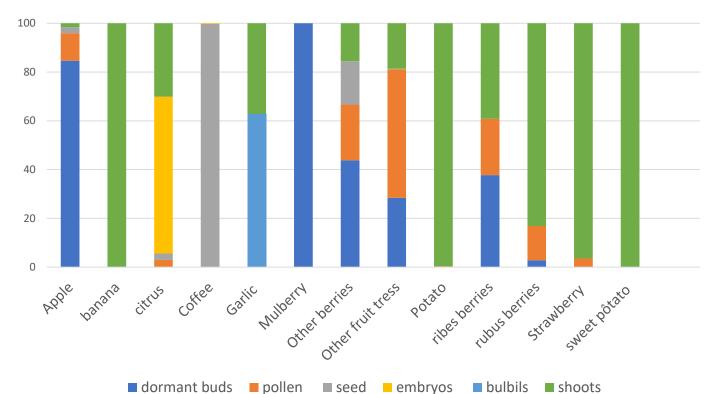
INDEPENDENT EXPERT REPORT: JULY 2017

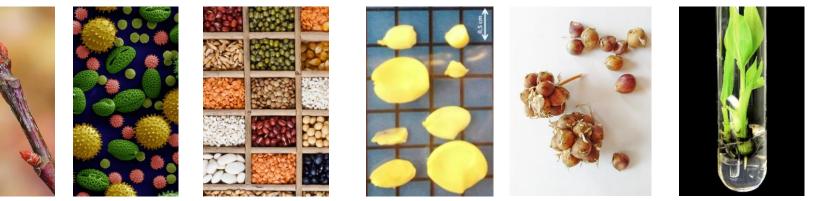


Survey was sent to 26 organizations around the world holding existing or emerging cryo-collections

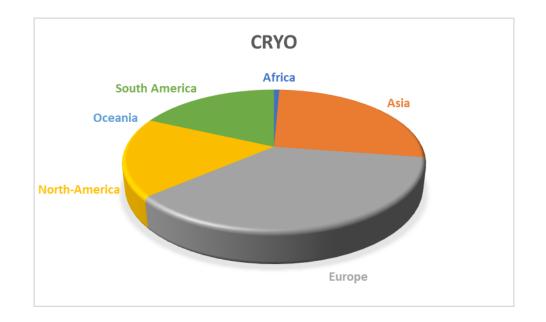

Status of cryopreserved crop collections

- 15 institutes together hold 9,650 accessions of 30 crops in cryopreservation
- This constitutes only 16% of the total number of accessions they collectively hold of these crops.
- The majority of the accessions are maintained in the field (66%) and/or *in vitro* culture (46%).


Only 17 crops have cryopreserved collections of more than 100 accessions !

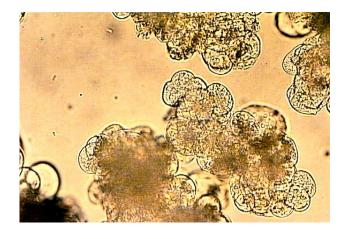

rubus berries other berries

dormant buds pollen

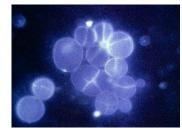


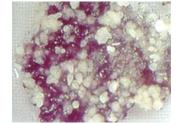
Institute	N° of Acc.	Сгор	Cryopreservation Method
Bioversity International, Leuven, Belgium	1100	Banana	Droplet vitrification
Association FOrêt-CELlulose (AFOCEL), France	440	Elm	Dormant bud freezing
International Center for Tropical Agriculture (CIAT), Cali, Colombia	480	cassava	 Droplet vitrification Encapsulation/dehydration
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany	213	Garlic	Droplet vitrification
International Potato Center (CIP), Lima, Peru	3227	Potato	Droplet vitrification
Julius Kühn-Institut (JKI), Institut für Züchtungsforschung an Obst, Dresden, Germany	194	Strawberry	Vitrification
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany	1818	Potato	Droplet freezingDroplet vitrification
National Agrobiodiversity Center (NAAS), RDA, Suwon, South Korea	1158	Garlic	Droplet vitrification
National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan	1236	Mulberry	Dormant bud freezing
USDA-ARS, Fort Collins and Corvallis, USA	2155	Apple	Dormant bud freezing
USDA-ARS, Fort Collins and Corvallis, USA	451	Citrus	Droplet vitrification
Tissue Culture and Cryopreservation Unit, NBPGR, Delhi, India	329	Mulberry	Dormant bud freezing
Crop Research Institute, Prague, Czech Republic	157	Garlic	Droplet vitrification





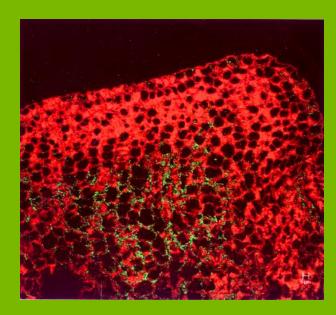
Application 2. Long term storage of specific cell lines


Example: cryopreservation of banana embryogenic cells


Problems related to the use of embryogenic cell suspensions in banana

- Their initiation is difficult and time consuming (up to 2 years !)
- Once initiated, they can be subject to :
 - somaclonal variation
 - microbial contamination
- Prolonged culture periods result in loss of morphogenic capacity

Regenerable suspensions should be safely stored in liquid nitrogen, since they are the material of choice for :



Application 3. Eradication of virusses

Examples of cryotherapy for pathogen eradication (Wang et al., 2009)

		Plant regeneration from shoot tips (%)		Pathogen-free regenerants (%)		
Plant	Pathogen	Meristem	Cryo	Meristem	Cryo	References
Banana	CMV	100	76	4	34	Helliot <i>et al.</i> (2002)
Banana	BSV	100	76	76	90	Helliot et al. (2002)
Grapevine	GVA	75	60	12	96	Wang <i>et al.</i> (2003)
Potato	PLRV	55	87	56	85	Wang <i>et al.</i> (2006)
Potato	PVY	55	87	62	93	Wang <i>et al.</i> (2006)
Prunus hybrid	PPV	85	50	19	50	Brison <i>et al.</i> (1997)
Raspberry ^a	RBDV	60	30	0	35	Wang <i>et al.</i> (2008)
Sweet orange ^b	HLB	69	85	25	98	Ding <i>et al.</i> (2008)
Sweet potato ^c	SPCSV	100	87	100	100	Wang & Valkonen (2008b)
Sweet potato ^c	SPFMV	100	87	10	100	Wang & Valkonen (2008b)
Sweet potato ^c	SPCSV + SPFMV	100	87	7	100	Wang & Valkonen (2008b)
Sweet potato ^d	SPLL	100	85	10	100	Wang & Valkonen (2008a)

Table 2 Comparison of cryotherapy of shoot tips (Cryo) and meristem tip culture (Meri) for their efficiency in pathogen eradication

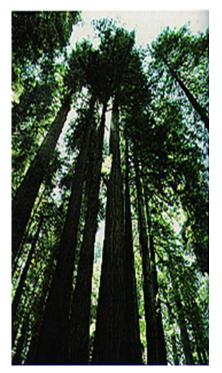
BSV, banana streak virus; CMV, cucumber mosaic virus; GVA, grapevine virus A; HLB, huanglongbing bacterium; PLRV, potato leaf roll virus; PVY, potato virus Y; RBDV, raspberry bushy dwarf virus; SPCSV, sweet potato chlorotic stunt virus; SPFMV, sweet potato feathery mottle virus; SPLL, sweet potato little leaf phytoplasma.

^aShoots were subjected to thermotherapy followed by cryotherapy of the excised shoot tips.

^bApplied also to another accession of sweet orange, Beijing lemon, mandarin and pummelo, which resulted in HBL-free regenerants at 93%, 91%, 93% and 94% frequency, respectively.

^cShoot tips size 1.5 mm.

^dShoot tip size 1.0 mm.



Application 4. Breeding tool

Cryopreservation as a breeding tool

- Many adult trees (such as conifers) can not be vegetatively propagated (rejuvenation problem)
- Clonal propagation only possible through somatic embryogenesis (starting from seeds)
- It takes decades before the value of a selection/cross can be determined
- Storage of embryogenic cultures could meanwhile happen through cryopreservation

Application 5. Storage of clean stock cultures

Cryopreservation to store of clean stocks for the long term in a production environment

- Large amounts of independent in vitro cultures are being conserved by in vitro production companies
 - Cultures in production. It is adviced to store a "clean", true totype back-up *in case of problems of contamination, hyperhydricity and somaclonal variation
 - Cultures that are "On hold". Putative interesting but not in production. Their maintenance is costly and and risks of loss.

A cryopreserved stock locally stored or in a specialized facility could provide a solution

Future of plant cryopreservation

Many efficient cryopreservation protocols for many species are available; are all problem solved?

- Cryopreservation of some species remains difficult
- Sometimes tissues survive cryopreservation but do not grow out "normally"
- Cryopreservation remains labor intensive and thus costly.
 Should be considered as a long term investment
- Presence of **endogenous microorganisms**

Acknowledments Partnerships

Natalia Sleziak

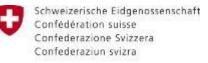
Kevin Longin

Hans Krohn

Edwige Andre

Bart Piette

Hannes Wilms



Australian Government

Australian Centre for International Agricultural Research

Federal Ministry for Economic Cooperation and Development

Swiss Agency for Development and Cooperation SDC

https://www.bioversityinternational.org/e-library/publications/detail/feasibility-study-for-a-safety-back-upcryopreservation-facility-independent-expert-report-july-2017/

Thank you

www.bioversityinternational.org

Alliance

