Cryobanking of Plant Genetic Resources in the Czech Republic

Cryopreservation as Safety Duplication

Miloš Faltus, Stacy Hammond Hammond, Olena Bobrova, Alois Bilavčík, Jiří Zámečník

Plant Physiology and Cryobiology Team, Crop Research Institute, Prague

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
The National Programme on Conservation and Utilization of Plant Genetic Resources and Agrobiodiversity

- Organized by Ministry of Agriculture
- Coordinated by the Crop Research Institute
- Board of plant genetic resources - curators of generatively and vegetatively propagated crops
 - Generatively propagated crops (cereals, ..) stored in form of seed at low temperature for few or tens years in the Central Seed Genebank
 - Vegetatively propagated crops – storing in form of seeds is not possible, stored in vegetatively propagated part of plants – tubers, bulbs, cuttings, ex vitro explants or intact plants in field conditions; backup in the Central Cryobank
The National Programme on Conservation and Utilization of Plant Genetic Resources and Agrobiodiversity

Vegetatively propagated crops - National curators:

- Potato research Institute Havlíčkův Brod – potato (*in vitro*)
- Hop Research Institute Žatec – hop
- MENDELU Lednice – thermophilic temperate fluit trees
- CRI Olomouc – *Allium*
- VSV Karlštejn CRI, Ampelos Vrbovec, MENDELU Lednice – *Vitis*
- Research and Breeding Institute of Pomology Holovousy – temperate fruit trees
Vegetatively propagated crops - National curators:

Basic strategy of plant germplasm cryoconservation

– safety duplication of basic collections (different storage method and locality)

– storing the most valuable genetic material of the Czech origin

Central cryobank in the frame of „National program“ – collaborates with plant germplasm curators, that provide the most valuable samples for their backup.

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Current Cryopreservation Activities

Cryobank - current state

<table>
<thead>
<tr>
<th>Crop number</th>
<th>Crop code</th>
<th>Crop name</th>
<th>Number of accessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F01</td>
<td>Malus domestica BORK</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>F07</td>
<td>Pyrus communis L. (E</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>F24</td>
<td>Prunus armeniaca L.</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>F28</td>
<td>Persica vulgaris P.M</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>F35</td>
<td>Cerasus avium (L.) M</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>F37</td>
<td>Cerasus vulgaris P.M</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>F38</td>
<td>Cerasus P.MILLER (ot</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>F46</td>
<td>Fragaria x ananassa</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>F80</td>
<td>Lonicer L. (edible</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>H01</td>
<td>Allium sativum L.</td>
<td>187</td>
</tr>
<tr>
<td>11</td>
<td>S01</td>
<td>Solanum tuberosum L1</td>
<td>104</td>
</tr>
<tr>
<td>12</td>
<td>V01</td>
<td>Vitis vinifera L.</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>W93</td>
<td>*Malus MILL. <short. c</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>X90</td>
<td>Humulus lupulus L.</td>
<td>68</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>
Current Cryopreservation activities

FUNDING

- Institutional project: 22%
- National projects: 32%
- International project: 37%
- National program: 9% (0.7 personal capacity)
Current Cryopreservation activities

Tripartite German-Czech-Polan *Allium* cryobank - preservation of valuable accessions of garlic gene pools on the basis of mutual reciprocity within the framework of tripartite international cooperation, which is the result of a joint GENRES research project called EURALLIVEG (Jiri Zamecnik)

“Healthy berries in a changing climate: development of new biotechnological procedures for virus diagnostics, vector studies, elimination and safe preservation of strawberry and raspberry” – international cooperation project Czech Rep. + Norway (NIBIO) (Alois Bilavcik)

“Nanocomposite hydrogels for cryopreservation of plant genetic resources“ within the programme Horizon Europe, call “MSCA4Ukraine” - Grant Agreement No. 1233650 (Olena Bobrova)

Genotyping-by-sequencing of the European garlic collection to develop a sustainable ex situ conservation strategy (Garli-CCS) - Sixth Call, Phase X, ECPGR Grant
Cryopreservation protocols

- **plant material** – *ex vitro*, *in vitro*

- **acclimation** – low temperature, osmotic

- **methods** - two-step freezing, encapsulation-dehydration, simple-dehydration, vitrification, droplet-vitrification

- **recovery** - safe cryopreservation and recovery of samples
Cryopreservation protocols

- Two-step freezing – dehydration by freezing
- Encapsulation-dehydration – dehydration by dry air
- Simple-dehydration – dehydration by dry air
- Vitrification – osmotic dehydration
- Droplet-vitrification – osmotic dehydration
Cryopreservation protocols

- **Two-step freezing** – dehydration by freezing
- Encapsulation-dehydration
- Simple-dehydration
- Vitrification
- Droplet-vitrification
Two-step cryopreservation

1. step

- Dehydration
- Equilibration
- Liquid nitrogen

2. step

- Rehydration
- Regeneration

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Cryopreservation protocols

- Two-step freezing
- Encapsulation-dehydration
- Simple dehydration
- Vitrification
- Droplet-vitrification

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Cryopreservation protocols

- Two-step freezing
- Encapsulation-dehydration
- Simple dehydration
- Vitrification
- Droplet-vitrification

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Cryopreservation protocols

- Two-step freezing
- Encapsulation-dehydration
- Simple dehydration
- Vitrification
- Droplet-vitrification

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Two-step cryopreservation

I. step
- Dehydration
- Equilibration
- Liquid nitrogen

II. step
- 2 °C: 6 h
- 1000 °C: 3 h
- 690 °C: 0 h

Regeneration
- Visual evaluation – browning of tissues, sprouting in water or peat, grafting
- Chip budding – orchard, glasshouse
- The end of May - beginning of July
- Evaluation – after 100 – 130 days

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Cryopreservation protocols

• Two-step freezing
• Encapsulation-dehydration
• Simple dehydration
• Vitrification
• Droplet-vitrification

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Cryopreservation protocols

- Two-step freezing
- Encapsulation-dehydration
- Simple-dehydration
- Vitrification
- Droplet-vitrification

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Cryopreservation protocols

- **Two-step freezing**
- **Encapsulation-dehydration**
- **Simple dehydration**
- **Vitrification**
- **Droplet-vitrification**

1st Meeting of the ECPGR Cryopreservation Working Group

Sampling of buds

- Orchards - **ecodormant**
- Temperature – longer period of **subzero temperature**
- Keeping – temperature – 4 °C

Pretreatment of samples

- Cutting
- Dehydration & cold hardening
- **Thermal characteristics determination (DSC, DTA)**

Warming and rehydration

- Warming - at 4 °C
- Rehydration – moist white peat at 4 °C

Regeneration

- Visual evaluation – browning of tissues, sprouting in water or peat, grafting
- Chip budding – orchard, glasshouse
- **The end of May - beginning of July**
- Evaluation – after 100 – 130 days

Cryopreservation protocols

- Two-step freezing

- Encapsulation-dehydration – dehydration by dry air

- Simple-dehydration – dehydration by dry air

- Vitrification

- Droplet-vitrification
Dissection and encapsulation of *in vitro* cultures

- Two-step freezing
- Encapsulation-dehydration
- Simple dehydration
- Vitrification
- Droplet-vitrification

Encapsulated shoot tip

Cryopreservation protocols

- Two-step freezing
- Encapsulation-dehydration
- Simple dehydration
- Vitrification
- Droplet-vitrification

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic

Dehydration

Encapsulated shoot tips
Regeneration of encapsulated shoot tips

Regenerating plants (30 days after thawing)

Regrowing shoot tip (14 days after warming)
Cryopreservation protocols

- Vitrification
- Droplet-vitrification

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Cryopreservation protocols

- Two-step freezing
- Encapsulation-dehydration
- Simple-dehydration
- **Vitrification** – osmotic dehydration
- **Droplet-vitrification** – osmotic dehydration
Cryopreservation protocols

- **Vitrification** – osmotic dehydration
- **Droplet-vitrification** – osmotic dehydration

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Cryopreservation protocols

Recovery - safe cryopreservation and recovery of samples
Cryopreservation protocols

Recovery - safe cryopreservation and recovery of samples

Minimal number of stored samples
- Number of stored samples – 120 shoot tips, 20 pcs for control recovery
- Minimal explant regeneration – 20 -30 %

Stefan Dussert probability tool
- Minimal number of stored shoot tips – 120 pcs
- Minimal size of control sample – 40 pcs
- Minimal explants recovery – 30%
- Minimal number of recovered shoot tips from total amount stored – 14 pcs
Cryotherapy

Virus elimination by cryopreservation

• Potato

• Hop

• Garlic

• Raspberry
Cryotherapy

POTATO

<table>
<thead>
<tr>
<th>Method</th>
<th>PLRV</th>
<th>PVY</th>
<th>PVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermontherapy</td>
<td>28%</td>
<td>24%</td>
<td>0%</td>
</tr>
<tr>
<td>chemotherapy</td>
<td>0%</td>
<td>22% *</td>
<td>80%</td>
</tr>
<tr>
<td>cryotherapy</td>
<td>67%</td>
<td>64%</td>
<td>0%</td>
</tr>
</tbody>
</table>

* Not succesfull for PVY- O

HOPS

<table>
<thead>
<tr>
<th>Method</th>
<th>ApMV</th>
<th>HMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermontherapy</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Cryotherapy</td>
<td>15%</td>
<td>88%</td>
</tr>
</tbody>
</table>

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Thermal analysis as a tool for cryopreservation protocol development

Thermal Analysis – Differential Scanning Calorimetry

- **heat flow measurement** during temperature change – **assessment of heat capacity changes** – connected with changes of a state of matter – liquid vs solid, crystals vs glassy state

- the first-order transition events – **crystallization or melting** (connected with transition energy release) the second-order transition event – **glassy state**

- **freezable water content**
Thermal analysis as a tool for cryopreservation protocol development

- Thermal Analysis – Differential Scanning Calorimetry
 - heat flow measurement during temperature change
 - assessment of heat capacity changes connected with changes of a state of matter – liquid vs solid, crystals vs glassy state
 - the first-order transition events – crystallization or melting (connected with transition energy release)
 - the second-order transition event –
 - freezable water content

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Thermal analysis as a tool for cryopreservation protocol development

- Thermal Analysis – Differential Scanning Calorimetry
 - Heat flow measurement during temperature change
 - Assessment of heat capacity changes connected with changes of a state of matter – liquid vs solid, crystals vs glassy state
 - The first-order transition events – crystallization or melting (connected with transition energy release)
 - The second-order transition event – glassy state
- Freezable water content

- The first-order transition events
- The second-order transition events
- Freezable water content
Thermal analysis as a tool for cryopreservation protocol development

Thermal Analysis – Differential Scanning Calorimetry

- heat flow measurement during temperature change
- assessment of heat capacity changes connected with changes of a state of matter – liquid vs solid, crystals vs glassy state

- the first-order transition events – crystallization or melting (connected with transition energy release)
- the second-order transition event – glassy state

- freezable water content

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Thermal analysis as a tool for cryopreservation protocol development

VITRIFICATION CONTROL BY DSC AT 10 °C/min.

<table>
<thead>
<tr>
<th>CPA conc. group</th>
<th>SOLUTE CONCENTRATION (g / g)</th>
<th>CRYOPRESERVATION CONDITIONS</th>
<th>CRITICAL COOLING RATE</th>
<th>CRITICAL WARMING RATE</th>
<th>FREEZING/MELTING during cooling / warming</th>
<th>GLASSY STATE</th>
<th>WATER CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0–0.5</td>
<td>Near-equilibrium freezing</td>
<td>CCR>10 °C/min.</td>
<td>T_h / T_m</td>
<td>T_g ≈ T_g(MFCP)</td>
<td>>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5–0.6</td>
<td>Supercooling</td>
<td>CCR<10 °C/min.</td>
<td>− / T_m</td>
<td>T_g</td>
<td>1–0.67</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>– devitrification sensitive</td>
<td>CWR≤10 °C/min.</td>
<td>− / − (T_m)</td>
<td>T_g</td>
<td>0.67</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>Vitrification</td>
<td>CWR<10 °C/min.</td>
<td>− / −</td>
<td>T_g</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>– „stable“</td>
<td>CWR~0 °C/min.</td>
<td>− / −</td>
<td>T_g ≈ T_g(MFCP)</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>>0.8</td>
<td>Supersaturated solution</td>
<td>CCR>10 °C/min.</td>
<td>T_h / T_m</td>
<td>T_g ′</td>
<td><0.25</td>
<td></td>
</tr>
</tbody>
</table>

1st Meeting of the ECPGR Cryopreservation Working Group
3-4 May 2023, Crop Research Institute, Prague, Czech Republic
Prospects and limits of cryobanking

Goals:
• Improving knowledge of cryotolerance
• Development of protocols for sensitive plant species and genotypes
• Complete the cryopreservation of selected types of crops of national importance
• Health status control of explants
• Sharing information about cryobanking
• Cooperation on international projects

Limits:
• unstable and insufficient funding of the cryobank
Thank you for your attention!

1st Meeting of the ECPGR Cryopreservation Working Group

3-4 May 2023, Crop Research Institute, Prague, Czech Republic